DPP - 2

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/47
https://youtu.be/dcpetVdXMjg

Q 1. A metal rod of length 2 m has cross sectional areas 2 A and A as shown in figure. The ends are maintained at temperatures $100^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The temperature at middle point C is
(a) $80^{\circ} \mathrm{C}$

(c) $90^{\circ} \mathrm{C}$
(b) $85{ }^{\circ} \mathrm{C}$
(d) $95^{\circ} \mathrm{C}$

Q 2. Three conducting rods of same material and cross-section are connected as shown in figure. Temperatures of A, D and C are maintained at $20^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. If there is no flow of heat in $A B$, then ratio of the lengths of $B C$ and $B D$ is

(a) $2 / 9$
(b) $9 / 2$
(c) $2 / 7$
(d) $7 / 2$

Q 3. Three rods made of the same material and having the same cross-section have been joined as shown in the figure. Each rod is of the same length. The left and right ends are kept at $0^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ respectively. The temperature of junction of the three rods will be

(a) $45^{\circ} \mathrm{C}$
(b) $60^{\circ} \mathrm{C}$
(c) $30^{\circ} \mathrm{C}$
(d) $20^{\circ} \mathrm{C}$

Q 4. Five rods of same material and same cross-section are joined as shown. Lengths of rods $a b, a d$ and $b c$ are $l, 2 l$ and $3 l$ respectively. Ends a and care maintained at temperatures $200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. For what length x of rod dc there will be no heat flow through rod $b d$?

(a) $4 l$
(b) $2 l$
(c) $6 l$
(d) $9 l$

Q 5. Five rods of same materiatand same eross-section are joined as shown. Lengths of rods $a b$, ad, $b c$ and dc are 1, 21, 31 and 61 respectively. Ends a and c are maintained at temperatures $200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. Temperature of point b will be:

(a) $120{ }^{\circ} \mathrm{C}$
(b) $160^{\circ} \mathrm{C}$
(c) $150{ }^{\circ} \mathrm{C}$
(d) $90^{\circ} \mathrm{C}$

Q 6. Find the temperature T of the junction shown in the figure for three rods; identical in dimensions:

(a) $\frac{100}{3}{ }^{\circ} \mathrm{C}$
(b) $\frac{200}{3}{ }^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) $\frac{50}{3}{ }^{\circ} \mathrm{C}$

Q 7. Two rods of same material and thickness are joined as shown below(one is semicircular and other is straight). The ends X and Y are maintained at $\mathrm{X}^{\circ} \mathrm{C}$ and $\mathrm{Y}^{\circ} \mathrm{C}$ respectively. The ratio of the heat flow in the two rods is -

Q 8. Three rods of material x and three rods of material y are connected as shown in the figure. All rods are of identical length and cross-section. If the end A is maintained at figure. All rods are of identical length and cross-section. If the end A is maintained at
$60^{\circ} \mathrm{C}$ and the junction E at $10^{\circ} \mathrm{C}$, find the effective Thermal Resistance. Given the length of each $\operatorname{rod}=l$, area of cross-section $=\mathrm{A}$, conductivity of $\mathrm{x}=\mathrm{K}$ and conductivity of y $=2 \mathrm{~K}$
(a) 0.36
(b) 0.64
(c) 0.18
(d) 0.06

(a) $\frac{2 l}{3 K A}$
(b) $\frac{7 l}{6 K A}$
(c) $\frac{4 K A}{3 l}$
(d) $\frac{7 K A}{3 l}$

Q 9. Five identical rods are joined as shown in figure. Point A and C are maintained at temperature $120^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively. The temperature of junction B will be

(a) $100^{\circ} \mathrm{C}$
(b) $80^{\circ} \mathrm{C}$
(c) $70{ }^{\circ} \mathrm{C}$
(d) $0{ }^{\circ} \mathrm{C}$

Q 10. A spherical body of radius ' b ' has a concentric cavity of radius 'a' as shown. Thermal conductivity of the material is K. Find thermal resistance between inner surface P and outer surface Q .

(a) $\frac{1}{4 \pi K}\left(\frac{1}{a}-\frac{1}{b}\right)$
(b) $\frac{1}{4 \pi K}\left(\frac{1}{a}+\frac{1}{b}\right)$
(c) $\frac{1}{4 \pi K}\left(\frac{a b}{\ln \frac{b}{a}}\right)$
(d) $\frac{1}{4 \pi K}\left(\frac{\ln \frac{b}{a}}{a b}\right)$

Q 11. A composite cylinder is made of two materials having thermal conductivities K_{1} and K_{2} as shown. Temperature of the two flat faces of cylinder are maintained at T_{1} and T_{2}. For what ratio $\frac{K_{1}}{K_{2}}$ the heat current throught the two materials will be same. Assume steady state and the rod is lagged (insulated from the curved surface).

(a) 1
(b) 2
(c) 3
(d) 4

Q 12. The thickness of ice in a lake is 5 cm and the atmospheric temperature is $-10^{\circ} \mathrm{C}$. Calculate the time required for the thickness of ice to grow to 7 cm . Thermal
conductivity for ice $=4 \times 10^{-3} \mathrm{cal} \mathrm{cm}^{-1} \mathrm{~s}^{-1}{ }^{\circ} \mathrm{C}^{-1}$, density of ice $=0.92 \mathrm{~g} / \mathrm{cc}$ and latent heat of fusion of ice $=80 \mathrm{cal} / \mathrm{gm}$.
(a) 6.6 Hr
(b) 3.5 Hr
(c) 1.02 Hr
(d) 9.12 Hr

Q 13. Ice starts forming in lake with water at $0^{\circ} \mathrm{C}$ and when the atmospheric temperature is $10^{\circ} \mathrm{C}$. If the time taken for 1 cm of ice be 7 hours. Find the time taken for the thickness of ice to change from 1 cm to 2 cm
(a) 11 hours
(b) 6 hours
(c) 16 hours
(d) 21 hours

Answer Key

Q. 1 c $\mathrm{D}^{\text {c }}$	Q. 2 c	Q. 3 b	Q. 4 c	Q. 5 c
Q. 6 b	Q. 7 b	Q. 8 b	Q. 9 c	Q.10 a
Q. 11 c	Q. 12 a	Q. 13 d		

